Oxidative and photoxidative polymerization of humic suprastructures by heterogeneous biomimetic catalysis.
نویسندگان
چکیده
The meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of manganese(III) chloride [Mn-(TDCPPS)Cl] biomimetic catalyst immobilized on spacer-functionalized kaolinite clay mineral was employed in the oxidative coupling reaction of a dissolved humic acid (HA) suprastructure with either chemical (H2O2) or UV-light oxidation. The changes in molecular size of humic matter subjected to catalyzed oxidative reaction were followed by high-performance size exclusion chromatography (HPSEC) with UV-vis and refractive index (RI) detectors in series, and by thermogravimetric (TGA) analysis. Both the enhanced molecular size shown by differences between HPSEC chromatograms of humic reaction mixtures at either pH 6 or 3.5 and the increase of thermogravimetric stability suggest that the heterogeneous biomimetic catalysis promoted the stabilization of humic conformations by new intermolecular covalent bonds during oxidative coupling. The similarity between chemical and light-induced oxidation results suggests potential multiple applications of the kaolinite-supported heterogeneous catalyst in controlling the reactivity of natural organic matter within biogeochemical cycles and environmental reactions.
منابع مشابه
Increased conformational rigidity of humic substances by oxidative biomimetic catalysis.
A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe(TDCPPS)Cl, was employed as a biomimetic catalyst in the oxidative coupling of terrestrial humic materials. High-performance size-exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance (CPMAS-(13)C NMR), electron paramagnetic resonance (EPR), and diffuse reflectance infrar...
متن کاملCo-polymerization of penta-halogenated phenols in humic substances by catalytic oxidation using biomimetic catalysis.
INTRODUCTION A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe-(TDCPPS)Cl, was employed to catalyze the oxidative co-polymerization of penta-halogenated phenols in two humic materials of different origin. MATERIALS AND METHODS Co-polymerization of pentachlorophenol (PCP) was followed by high-performance size-exclusion chromatography (HP...
متن کاملOligomerization of humic phenolic monomers by oxidative coupling under biomimetic catalysis.
Three humic phenolic monomers, catechol (CAT), caffeic acid (CAFF), and p-coumaric acid (COUM), were subjected to oxidative coupling catalyzed by biomimetic water-soluble iron-porphyrin (Fe(TDCPPS)CI) in either separate or mixed solution, and the reaction products were characterized by gas chromatography-mass spectrometry (GC-MS) and electrospray-mass spectrometry (ESI-MS). The GC-MS analysis p...
متن کاملCopolymerization of 2,4-dichlorophenol with humic substances by oxidative and photo-oxidative biomimetic catalysis.
We evaluated the catalytic activity of a water-soluble iron-porphyrin in an oxidative coupling reaction to form covalent bonds between 2,4-dichlorophenol (2,4-DCP) and humic molecules. The biomimetic catalysis in the presence of H₂O₂ was tested in the dark and in daylight, and changes in reaction products were revealed by high-performance liquid chromatography (HPLC) and nuclear magnetic resona...
متن کاملRates of oxidative coupling of humic phenolic monomers catalyzed by a biomimetic iron-porphyrin.
A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(lll) chloride (FeP) was used as biomimetic catalyst in the oxidative coupling of three monomeric phenols (catechol, caffeic, and p-coumaric acids), which are common constituents of natural humic substances. The extent of oxidation induced by the FeP catalyst in solutions of phenolic monomers was followed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2013